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Abstract

Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This
study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth
rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic
substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was
compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined
that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of
a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many
decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic
differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or
galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic
rate began a sharp decline. Previous studied have reported that O2 consumption in S. cerevisiae grown in reduced dextrose
levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and
increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates,
measured by either O2 consumption or CO2 production, in the strains used in this study.
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Introduction

Yeasts in general, and the bakers yeast Saccharomyces cerevisiae in

particular, have been extensively used for many decades to

examine a wide array of biological processes, including studies on

cell cycle control, gene expression regulation and control of

metabolic function [1,2,3]. Humans have also made widespread

domestic use of yeast for thousands of years, primarily either for

food baking or as a fermenting agent to produce ethanol [4,5,6].

The large-scale industrial use of yeast has provided an initial

impetus for research studies to understand the factors controlling

yeast metabolic processes [7,8]. While yeast metabolism has been

intensely studied, there remain areas of controversy on issues such

as the metabolic response of yeast to reduced dextrose levels or the

relative use of aerobic fermentation in varied metabolic substrates

[9,10].

Most eukaryotic cells are considered respiratory and require

oxygen to metabolize dextrose. But some organisms, including S.

cerevisiae, can metabolize dextrose via fermentation, obviating the

need for oxygen [11]. In high concentrations of dextrose, S.

cerevisiae actively represses respiratory enzyme synthesis. In these

conditions dextrose is metabolized via fermentation rather than

respiration, even when oxygen is abundant [11,12,13,14]. The

repression of respiratory enzyme synthesis by fermentation activity

is referred to as the Crabtree Effect, and such aerobic glycolysis is

also often characteristic of mammalian cancer cells [15]. Per unit

of dextrose consumed, fermentation reduces biomass by ,5-fold,

and ATP by ,15-fold, compared to respiration. However,

fermentation proceeds at much higher flux rates, leading to higher

absolute growth rates [8,12,16]. Furthermore, the ethanol

produced as a by-product of fermentation can subsequently be

utilized as a non-fermentable carbon source in respiration, thus

allowing for the near complete use of all available carbon [17,18].

As dextrose levels decline S. cerevisiae produces and accumulates

large amounts of glycogen and trehalose which provide energy

storage during starvation [19]. Once dextrose is depleted, glycogen

is used as an energy source to produce respiratory and

gluconeogenic enzymes in the adaptation period that precedes

growth on ethanol [11]. The depletion of dextrose from the

medium causes S. cerevisiae to undergo a transition termed the

diauxic shift. During this time cell growth is transiently arrested

and cell metabolism is shifted towards the use of non-fermentable

carbon substrates. After the diauxic shift to respiratory metabo-

lism, carbon substrates are catabolized via mitochondrial utiliza-

tion of the tricarboxylic acid (TCA) cycle and oxidative

phosphorylation [12,17,20]. Cells then resume a period of slow

growth that can last for days, during which cell density doubles.

Finally, cell cultures enter stationary phase 5–7 days after the

initial inoculation [19].

While dextrose is the preferred metabolic substrate of S.

cerevisiae, it can also grow on other sugars such as galactose,

sucrose [21,22], and a variety of non-fermentable substrates such
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as ethanol, glycerol and acetate [11]. The growth of S. cerevisiae on

metabolic substrates other than dextrose induces numerous

metabolic changes. For example, because dextrose requires much

less energy to metabolize than other substrates, S. cerevisiae

metabolizes galactose only in the absence of dextrose. To prevent

galactose metabolism in the presence of dextrose, S. cerevisiae has

evolved a complex regulatory network that represses genes

involved in galactose metabolism. When dextrose levels exceed

,0.25% in the medium, genes involved in galactose metabolism

are completely repressed [22]. Similarly, the addition of dextrose

to S. cerevisiae cells already growing on a non-fermentable carbon

source induces a variety of changes that include large increases in

rates of dextrose intake, glycolysis and protein synthesis, repression

of genes encoding enzymes involved in the uptake and metabolism

of alternative energy sources, stress resistance and gluconeogenesis

[12].

In addition to its rich history of contributions to understanding

metabolic function and regulation, S. cerevisiae has also been used in

comparative metabolic studies between laboratory-maintained

and natural isolates of yeast strains (e.g [23,24]). While laboratory

conditions typically are comprised of yeast growth in log phase in

high dextrose and nutrient rich medium, these conditions may

select for different metabolic capabilities than those found in

natural conditions, which likely consist of brief periods of nutrient

pulses followed by long periods of minimal food availability

[25,26,27].

Previous studies have compared genotypic level differences

between a S. cerevisiae strain isolated from a natural setting to that

of a common laboratory strain [28,29,30]. While well over 5000

genotypic differences were observed between these two strains the

phenotypic effects of these changes has not been as well

characterized. Studies that have looked for phenotypic changes

often have focused on examining the relationship between gene

expression patterns in response to environmental or genetic

changes [1,18]. While valuable, such studies may miss the overall

phenotypic effects of genetic variation in an organism. For

example, the relationship between specific growth rate and the

levels of enzymes directly involved in S. cerevisiae growth and

metabolism is often complex and does not co-vary in a simple

linear manner [7,31,32]. In the study presented here, I directly

compared the metabolism, metabolic rate, and growth rate of a

natural yeast strain to a common laboratory strain when grown in

a variety of metabolic substrates. The metabolic phenotype of the

two strains was very similar under a wide range of conditions

indicating that metabolism is well buffered against genotypic

changes.

Methods

Yeast Strains and Experimental Conditions
This study used haploid derivatives of Saccharomyces cerevisiae

strain BY4716 or RM11-1a (also referred to as BY or RM). The

strain RM11-1a was originally isolated from a California vineyard

in the 19909s [29], while BY4716 is a standard strain in

widespread laboratory use [33]. Freshly streaked cells were grown

on YP agar (Fisher Yeast Extract, Difco Peptone and agar) at 30uC
and single colonies were transferred to 10 ml of YP in a 16mm

glass test tube. The YP also contained one of two different carbon

sources: 2% dextrose (Sigma Chemical) (w/v), or 3% galactose

(Difco) (w/v), depending on the treatment. The 10 ml culture was

placed on a rotating drum at 30uC and grown overnight. When

grown in 2% glucose or 3% galactose an overnight culture reached

an optical density (OD660) of 1.5–2.0 by the next morning. These

cultures were then diluted 1:100 in new YP medium with the same

carbon source that it was originally grown in. This diluted culture

was grown until it reached an OD 660 of ,0.1 (,3 h for yeast

grown in glucose or galactose).

Metabolic measurements
Determination of CO2/O2 fluxes was done based on previously

established methods [34]. Yeast cultures grown as described above

were pipetted into sterilized metabolic ‘‘boats’’ which were made

from modified tissue culture slides (Lab-Tek, Nalge-Nunc,

Naperville, Il.) and placed in metabolic chambers. The metabolic

chambers were custom manufactured from 2.5 cm diameter Pyrex

glass tubing and sealed with double Viton O-rings fitted into

valved brass plugs. Each chamber had a volume of 50 ml. A total

of 7 chambers were used in each metabolic experiment including 1

chamber that contained only YP medium. Gas flow into each

chamber was controlled using a computer controlled multiplexer

(Sable Systems International, Las Vegas, NV, USA). Two ml of

culture was placed in the chamber, and was then flushed with

CO2-free air of known O2 content, at 150 ml/minute STPD.

Each chamber was sequentially flushed ,5 times (30 s/flush)

before being sealed for the metabolic sampling interval. CO2 was

initially removed from the air stream by running compressed air

through a Pure Air (MTI, Westminster, CO) gas drier to fill a 40 L

air tank to a pressure of ,800 kPa. Removal of any additional

CO2 was accomplished by running air from this storage tank

through Drierite and Ascarite gas scrubbing columns. These

columns were upstream of a mass flow controller (Sierra

Instruments, Monterrey, CA, USA) used to regulate airflow into

the chambers and gas analyzers. After flowing through the

metabolic chamber, water was removed from the air stream with a

magnesium perchlorate filter before entering a CO2 analyzer

(either a Li-Cor 6262 or 6252 CO2 analyzer Lincoln, NE, USA)

and a dual channel Oxzilla fuel-cell O2 analyzer (Sable Systems).

Both CO2/O2 fluxes were recorded and the respiratory quotient

(RQ) calculated to determine the rate of aerobic fermentation and

metabolic substrate utilization. The CO2 gas analysis system was

zeroed daily against CO2-free air, and calibrated regularly against

a 989 ppm certified gas standard (Air Products, Long Beach, CA).

The O2 analyzer was calibrated prior to each experiment against

well-mixed atmospheric air scrubbed of H2O with a column of

magnesium perchlorate. The accuracy of the system was assessed

through injection of known volumes of a calibration gas standard

with defined amounts of CO2 and N2 and by calculating the ratio

of CO2/O2 production and consumption generated from the

combustion of pure ethanol [35]. Based on these methods the

CO2/O2 analyzers gave readings within 2% of the predicted

values. In the presence of water CO2 can potentially form

carbonic acid. This process occurs at a relatively slow rate in the

absence of catalysts such as carbonic anhydrase, but could

potentially affect measures of CO2 flux. To check for the possible

liquid-induced attenuation of the CO2 signal a microinjection

pump was used to inject several hundred microliters of pure CO2

either into liquid medium or into the air space of a metabolic

chamber. The chamber was then sampled using the described

methods and the amount of CO2 contained in the sample

calculated. There was no significant effect of bubbling the CO2

through the liquid on the total amount of CO2 measured

compared to that of injection into an air chamber. This indicates

that the conversion of CO2 into carbonic acid was not occurring at

a rate sufficient to affect the gas measurements. Metabolic

chambers were maintained at 30uC using a custom designed

temperature control chamber. Temperatures in the growth

chambers and metabolic chambers were monitored with Hobo

data loggers (Bourne, MA).

Yeast Metabolism
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Oxygen and CO2 concentrations were analyzed on yeast

samples sealed in the chambers for intervals that varied from 20 to

60 min. Data were recorded using Sable Systems DATACAN

data acquisition hardware and software. Data from the CO2/O2

analyzers were corrected to compensate for the time required for

the gas sample to flow from the metabolic chambers to the

analyzers and was analyzed using enrichment gas analysis macros.

At the end of the sampling interval the final OD was measured for

each chamber to determine the final yeast cell density. The

samples were also checked for bacterial contamination by direct

examination at 600X with a compound microscope. The samples

remained in a fixed position in the metabolic chambers during the

measurements. While yeast are typically grown with shaking in

flasks, I found no statistically significant difference in growth rate

of yeast cells with or without shaking in the chambers over the

course of the experiments (data not shown).

Growth Assays
Yeast growth was assayed in cultures grown in 2 ml of medium

contained in 35 mm diameter Petri dishes at 30uC. Liquid

contained in the Petri dishes would have approximately the same

surface to volume ratio as the yeast samples in the metabolic

chambers. To minimize evaporation from the plates the Petri

dishes were sealed in a 2 L plastic container, which had a small

amount of sterile water in the bottom. Growth was assayed by

recording the OD660 of 3 independent samples for each time

point. Yeast density is also commonly measured using an OD of

600 nm and a set of samples was read at both OD9s to calculate

the relationship between densities measured at the 2 wavelengths.

There was a nearly perfect correlation between optical density

measured at OD 600 and 660 (R2.0.99 for both strains) with the

OD 600 reading for a sample of yeast around 15% less than the

OD 660 reading. For the OD measurements the samples were

diluted as necessary with H2O to ensure that the OD reading was

,0.70 to maintain linearity between OD and cell number. The

culture from each Petri dish was used once and then discarded.

The growth rate of samples grown in Petri dishes was essentially

the same as that of aliquots of the same culture simultaneously

grown in the metabolic chambers.

Metabolic Rate in Varied Dextrose
To assess the influence of dextrose levels on S. cerevisiae

metabolic rate, 100 ml of yeast grown in 2% dextrose was added

to metabolic ‘‘boats’’ containing YP with an initial level of 0, 0.3,

0.9, 1.5, 2 or 4% dextrose (w/v). The initial starting OD of the

samples was near 0.1. The sample was then sealed in a metabolic

chamber which was sampled every 20 min for a 4 h period. The

metabolic rate of at least six samples were assayed at each of the

dextrose concentrations. The metabolic data were standardized to

a relative metabolic rate of 1.0 against the second metabolic

reading to control for differences in starting yeast density. The

second metabolic reading was used because by this reading the gas

level in the sample was in steady state with the initial gas

concentration used to fill the chamber. A per cell metabolic rate

was calculated for the two yeast strains by determining the number

of yeast in the sample boat immediately after recording the last

metabolic reading. The last metabolic reading was divided by the

estimated cell number to calculate the CO2/O2 metabolic rates

per cell.

Statistics
Simple statistics were calculated using the statistical analysis

function in Excel. An ANOVA analysis (Systat 5) with a Fisher

LSD post-hoc test was used to determine if different dextrose levels

had a significant effect on yeast metabolic rate within the 2 yeast

strains. The effect of varied dextrose levels on the metabolic rate

between strain BY4716 and RM11 were compared to each other

using a Student’s T-test corrected for multiple comparisons using a

Bonferroni correction.

Results

Growth and metabolic rate on varied metabolic
substrates

As seen in figure 1A, when grown in 2% dextrose both the BY

and RM strains show an exponential increase in CO2/O2 fluxes

for ,5 h followed by a sharp decline in metabolic rate. Growth

rate also increased exponentially for ,9 h and then slowed and

reached a final cell density several-hundred fold higher than the

starting density. The respiratory quotient (Figure 1B) increased

over the first several hours and then declined sharply. This

decrease in RQ is consistent with cells switching from aerobic

fermentation of dextrose to the use of ethanol, or stored glycogen,

as the metabolic substrates for respiration [19,36]. The lower RQ

observed during the first few hours is consistent with an increased

use of respiratory metabolism during low growth rates [7,8,31].

The patterns of metabolic response and growth rate in dextrose

were very similar between the BY laboratory strain and the RM

strain isolated from a vineyard.

The pattern of metabolic response for BY and RM grown in 3%

galactose was similar to that on 2% dextrose (Figure 2), although

there are notable differences. Compared to growth in 2% dextrose

cells grown in galactose exhibited a longer lag time before

metabolic and growth rates began to increase exponentially. This

lag period was ,4–6 h for growth in 3% galactose compared to

,1 h in 2% dextrose. The final cell density obtained in galactose

was also 2–3 times higher than in 2% dextrose, consistent with

there being a greater biomass resource of carbon. As seen from the

RQ values (Figure 2B) both strains used galactose for aerobic

fermentation in a manner very similar to that seen with dextrose.

Growth
Metabolic rate and cell number did not co-vary in a simple

linear manner (Figures 1A and 2A). When grown in either 2%

dextrose or 3% galactose, both strains showed a growth pattern in

which the number of cells continued to increase well after the

metabolic rate began a sharp decline (Figure 1A and 2A).

The highest maximum specific growth rates per hour (also

called the growth rate constant) were in dextrose (m = 0.60 for BY

and RM), slightly lower in galactose (m = 0.47 for BY, and 0.40 for

RM). The difference in maximum specific growth rates of the two

strains for growth in galactose was not significant (Student t-test,

maximum m, BY = 0.48060.059; RM = 0.40260.018. P = 0.28,

df = 4). The growth rates of the two strains in galactose was also

compared during 7 time points during the first 24 hours of active

growth and were not significantly different (Paired t-test, mean m,

BY = 0.30360.059; RM = 0.29260.018. P = 0.60, df = 6). The

growth rates on dextrose and galactose reported here are

consistent with the growth rates expected on these different

carbon sources [7,9,31,37,38].

The effect of dextrose levels on metabolic rate
Yeast metabolic rate, measured both as CO2 production

(Figure 3) and O2 consumption (Figure 4) increased exponentially

over the 4 h time course in the 5 higher dextrose levels. The yeast

grown in 0.1% dextrose had an initial increase in metabolic rate

similar to the groups in higher dextrose. However, the exponential

increase in metabolic rate of this group ended after 1–2 h,

Yeast Metabolism
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probably due to the depletion of the available dextrose. The

pattern of increase in metabolic rate was very similar between BY

and RM strains (Figure 3 and 4).

The starting respiratory quotient of BY and RM in the varied

dextrose levels was .4, consistent with the use of aerobic

fermentation as the primary means of metabolism (Figure 5).

The RQ of both strains remained relatively constant over the

sample period. There were no significant differences in RQ over

time (repeat measures ANOVA, F = 0.211, P = 0.95, df = 5), if the

RQ values for the RM strain growing in 0.1% dextrose are

excluded from the analysis. When this group is included there is a

significant reduction in RQ starting at the 2.5 h sample interval.

The RQ of BY was ,15% higher than RM11, even if the lowest

RM dextrose group is excluded (average RQ BY = 4.7060.05,

RM = 4.0560.03 P,,0.001 df = 563).

There was no indication of reduced dextrose levels increasing

cellular metabolic rates as measured by rates of CO2/O2 flux

(Figure 6). The metabolic rate of 0.1% dextrose groups had the

lowest cell specific metabolic rate. One limitation of this result is

this group had probably already started reducing its metabolic rate

in response to low dextrose levels. The cell specific rate of CO2

production rates for the BY cells in 0.1% dextrose were

significantly lower than cells in 1 to 4% dextrose and the O2

consumption was reduced compared to cells growing in 1.5 and

Figure 1. Metabolic rate, growth and respiratory quotient (RQ)
of BY and RM grown in YP with 2% dextrose. Graphs are plotted
using the means and sem of 6 groups for the CO2/O2 measurements
and for 3 groups for the growth measurements. Cell number per ml for
figures 1 and 2 were calculated based on converting an optical density
reading to an estimated cell number.
doi:10.1371/journal.pone.0030053.g001

Figure 2. Metabolic rate, growth and RQ of BY and RM grown
in YP with 3% galactose. Graphs are plotted using the means and
sem of 6 groups for the CO2/O2 measurements and for 3 groups for the
growth measurements.
doi:10.1371/journal.pone.0030053.g002
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4% dextrose (CO2 ANOVA, F = 4.6, P = 0.003, df = 5; O2

ANOVA, F = 2.3, P = 0.07, df = 5 Post Hoc comparison FLSD).

The cell specific rate of CO2 production rates for the RM cells in

0.1% dextrose were significantly lower than cells at all the other

dextrose levels and the O2 consumption was reduced compared to

cells growing in 1.0 to 4% dextrose (CO2 ANOVA, F = 18.3,

P,0.001, df = 5; O2 ANOVA, F = 7.4, P = ,0.001, df = 5 Post

Hoc comparison FLSD). On a per cell basis the metabolic rates of

RM and BY were not significantly different in the different

dextrose concentrations when compared either by CO2 produc-

tion or O2 consumption (Student’s T-test, P = 0.01 to control for

multiple comparisons).

Discussion

Metabolic Rates
The metabolic and growth rates of S. cerevisiae strains BY4716

and RM11-1a grown on dextrose and galactose varied depending

Figure 3. Relative metabolic rate of BY (3A) and RM (3B) grown
in YP with a starting concentration of 0.1 to 4% dextrose based
on CO2 production. Figures 3–6 are plotted using the means
and sem of 6 groups. The metabolic rate data were normalized to a
value of 1.0 at the 2nd metabolic reading.
doi:10.1371/journal.pone.0030053.g003

Figure 4. Relative metabolic rate of BY (4A) and RM (4B) grown
in YP with a starting concentration of 0.1 to 4% dextrose based
on O2 consumption.
doi:10.1371/journal.pone.0030053.g004
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on the metabolic substrate. While the metabolic substrate had a

large effect on metabolism, the responses of the two strains to the

different substrates were very similar. The absolute metabolic rates

of the two strains were also very similar and are consistent with

other values in the literature for S. cerevisiae [11].

The maximum observed RQ values were between 4–5 for yeast

growth in dextrose and galactose similar to previously reported

values [39]. An RQ of 1.0 would be expected if these sugars were

being metabolized solely in aerobic respiration [36]. There have

been conflicting conclusions regarding the degree to which S.

cerevisiae normally undergoes aerobic respiration in dextrose [9].

Based on the RQ measurements observed in this study it is

apparent that the yeast were extensively using aerobic fermenta-

tion to metabolize dextrose. While elevated above 1.0, the fact that

the RQ was not higher than 5 indicates that respiration was not

entirely suppressed in these cells. Because dextrose levels of

.0.25% inhibit the expression of genes involved in respiration, it

might be expected that the RQ of yeast in dextrose would be

higher than during growth in galactose. This suppression of genes

involved in aerobic respiration would be expected to shift

Figure 5. RQ of BY (4A) and RM (4B) grown in YP with a starting
concentration of 0.1 to 4% dextrose.
doi:10.1371/journal.pone.0030053.g005

Figure 6. Cell specific metabolic rates of BY (4A) and RM (4B)
grown in YP with a starting concentration of 0.1 to 4%
dextrose. The cell specific metabolic rates are based on dividing the
final metabolic rate measurement of yeast grown in different dextrose
concentrations by the final number of cells in the sample chamber.
doi:10.1371/journal.pone.0030053.g006
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metabolism towards glycosis-based metabolism which does not

consume oxygen. Data from this study, however, do not support

that conclusion, although a possible explanation for the lower than

expected RQ values is that oxygen was being consumed by non-

respiratory processes such as biosynthesis.

Correlations between growth and metabolic rate
Growth rate, cell number and metabolic rate co-varied in a

complex manner in all of the substrates. The peak in metabolic

rate occurred well before the peak in growth rate for BY and RM

grown in either dextrose or galactose.

A reason for the observed pattern between metabolic rate and

cell number may be related to the ability of many microorganisms

to anticipate changes in environmental stimuli or conditions by

adapting to their temporal order of appearance [3]. It has been

proposed that when S. cerevisiae senses a depletion in dextrose levels

the cells begin to shut down metabolic processes and proceed

through one final cell division [40]. It has also been observed that

S. cerevisiae can both sense their instantaneous growth rate and

anticipate that dextrose will become depleted [19,41]. Yeast can

respond to a decrease in dextrose levels by increasing the number

of unbudded cells [19]. The results from this study support the

hypothesis that S. cerevisiae anticipates the depletion of either

dextrose or galactose and responds by greatly reducing metabolic

rate before producing a final round of daughter cells.

The maximum specific growth rate observed in this study in

dextrose was ,0.60. This is similar to other values reported for S.

cerevisiae that typically range from 0.42 to 0.55 [7,9,31,37,38],

although my values for the maximum specific growth rate in

galactose are somewhat higher than earlier reports [37].

Metabolic rates in varied dextrose concentrations
It had previously been reported that O2 consumption in S.

cerevisiae grown in medium containing 0.5% dextrose, a level

proposed to induce caloric restriction, was elevated compared to

yeast grown in 2% dextrose [10]. Based on this result it was

hypothesized that this increase in respiration could be responsible

for the increased lifespan of yeast grown in 0.5% dextrose [10]. In

contrast to earlier reports my metabolic measurements, measured

as CO2 production or O2 consumption, found no indication of an

increase in metabolic rate in reduced levels of dextrose in either

the BY or RM. A unique aspect of this study was that it measured

both CO2 and O2 gas fluxes in yeast grown in varied dextrose

levels. These measurements showed that reduced dextrose levels

did not increase either aerobic or fermentative based metabolism

in yeast.

Other studies also indicate that growth in medium containing

0.5% dextrose should not induce metabolic changes in S. cerevisiae.

Brettel et al. reported that the metabolic and growth rate of S.

cerevisiae remained almost constant in dextrose levels between 0.16

to 1.6% [42]. S. cerevisiae does switch to respiratory metabolism

when the medium is depleted of dextrose, but it appears that the

cells must actually be starved of dextrose before they undergo a

diauxic shift [12]. This makes it unlikely that a dextrose level of

0.5% will increase rates of oxidative respiration. The fact that the

RQ values remained elevated near 4 for the cultures grown in the

different dextrose levels indicates that the cells were continuing to

carry out aerobic fermentation at dextrose levels well below 0.5%.

The one exception to this was the cells that started growth in the

0.1% dextrose. This group showed a decrease in RQ, as would be

expected if the low dextrose levels were inducing a switch to mixed

respiro-fermentative metabolism [31]. However the absolute

metabolic rate of these cells was reduced compared to groups

growing in higher dextrose levels.

While gene expression patterns in S. cerevisiae are very responsive

to dextrose levels, the phenotypic effects of varied dextrose levels

on growth and metabolism are well buffered [18]. The growth of

S. cerevisiae is relatively insensitive to dextrose levels and remains

relatively constant when dextrose levels are .0.01% [12,43].

Metabolism and Growth in Laboratory and Natural
Strains

Although the recent evolutionary history of the BY and RM

strains were likely quite different, both strains had very similar

patterns of metabolism and growth. In a series of studies Kruglyak

and colleagues used these same 2 strains of yeast to assay for

genotypic differences between the strains [28,29,30]. Nearly 6000

genotypic differences were found between the strains. Despite a

large number of genotypic differences, this study shows that both

the metabolic and growth characteristics of the two strains are very

similar. Because of their fundamental importance of metabolism

and growth to the survivorship and fitness of an organism it is

perhaps not surprising that the two strains showed such similar

patterns.

Other studies that have compared biological variation between

different strains of S. cerevisiae have found some traits remain

relatively invariant, with others showed a wide degree of variation.

Van Dijken et al. compared growth rates, biomass yields,

sporulation, mating efficiency, transformation efficiency, and

growth rate at which yeast began respiro-fermentation in

chemostats of 4 commonly used laboratory strains [44]. They

found considerable variation between the strains in all of these

traits except for biomass accumulation per gram of dextrose

consumed. A study comparing the metabolism and physiology in

natural yeast isolates found that two sister species differed at the

genotypic level but were essentially identical phenotypically in

terms of growth and metabolic response to different substrates [6].

The varied metabolic capabilities of yeast make them a valuable

model organism for studying factors affecting metabolism. The

overall metabolic and growth rates of a wild isolate of yeast was

very similar to that of a strain that had been maintained under

laboratory conditions for many decades indicating that metabo-

lism and growth appears to be well buffered against genetic

differences.
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